Chaos and phase Synchronization in Ecological Systems

نویسندگان

  • Bernd Blasius
  • Lewi Stone
چکیده

An ecological population model is presented for the purposes of exploring complex synchronization phenomena in biological systems. The model describes a three level predator–prey– resource system which oscillates with Uniform Phase evolution, yet has Chaotic Abundance levels or Amplitudes (UPCA). We investigate the phase synchronization of two nonidentical diffusively coupled phase coherent models (i.e. with UPCA dynamics) and extend the analysis to study the models’ “funnel” regimes and response to noise forcing. Similar synchronization effects are reported for a two-dimensional lattice of chaotic population models coupled via nearest neighbors. With weak coupling, a collective phase synchronization emerges yet the peak population abundance levels are chaotic and largely uncorrelated. The synchronization patterns and traveling wave structures found in the spatial model correspond to those observed in natural systems — in particular, Ecology’s well-known Canadian hare–lynx cycle. We show that phase synchronization has important applications in the study of ecological communities where the spatial coupling of populations can lead to large scale complex synchronization effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Control to Approach Chaos Synchronization of Uncertain DUFFING Oscillator Systems with External Disturbance

This paper proposes a hybrid control scheme for the synchronization of two chaotic Duffing oscillator system, subject to uncertainties and external disturbances. The novelty of this scheme is that the Linear Quadratic Regulation (LQR) control, Sliding Mode (SM) control and Gaussian Radial basis Function Neural Network (GRBFNN) control are combined to chaos synchronization with respect to extern...

متن کامل

A Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering

In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Anti-synchronization and synchronization of T-system

In this paper, we discuss the synchronization and anti-synchronization of two identical chaotic T-systems. The adaptive and nonlinear control schemes are used for the synchronization and anti-synchronization. The stability of these schemes is derived by Lyapunov Stability Theorem. Firstly, the synchronization and anti-synchronization are applied to systems with known parameters, then to systems...

متن کامل

Modified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption

In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000